Reversed Halo Sign on CT as a Presentation of Lymphocytic Interstitial Pneumonia

Marcus D Freeman^{1*}, Joseph R Grajo¹, Neel D Karamsadkar¹, Thora S Steffensen², Todd R Hazelton¹

1. Radiology department, Tampa General Hospital, Tampa, USA

2. Pathology department, Tampa General Hospital, Tampa, USA

* Correspondence: Marcus Freeman, 8595 Montravail Circle APT 921, Temple Terrace, FL 33637, USA (Marcus freema2@alumni.health.usf.edu)

Radiology Case. 2013 Oct; 7(10):51-56 :: DOI: 10.3941/jrcr.v7i10.1517

ABSTRACT

A 52 year-old African American female with a past medical history of symptomatic uterine fibroids and increasing abdominal circumference underwent abdominal computed tomography (CT) as part of her workup. Because of an abnormality in the left lower lobe, CT of the chest was subsequently performed and showed a focal region of discontinuous crescentic consolidation with central ground glass opacification in the right lower lobe, suggestive of the reversed halo sign. The patient underwent percutaneous CT-guided core biopsy of the lesion, which demonstrated lymphocytic interstitial pneumonia, a benign lymphoproliferative disease characterized histologically by small lymphocytes and plasma cells. This case report describes the first histologically confirmed presentation of lymphocytic interstitial pneumonia with the reversed halo sign on CT.

CASE REPORT

CASE REPORT

A 52-year-old African American female with a past medical history significant for symptomatic uterine fibroids presented to the emergency department with menorrhagia and increased abdominal girth. She underwent transvaginal ultrasound (TVUS), which demonstrated a large heterogeneous uterus with areas of calcification, suggestive of uterine fibroids. However, because of the patient's pelvic pain, rapidly increasing abdominal girth and weight loss, she underwent computed tomography (CT) of the abdomen, which showed incidental small nodules in the left lower lobe [Fig. 1]. A dedicated chest CT was later performed to better characterize the nodules and evaluate for additional pulmonary abnormalities.

CT of the chest was performed from the thoracic inlet to the upper abdomen, which revealed a focal region of discontinuous crescentic consolidation with central ground glass opacification and some normal appearing lung in the right lower lobe, suggestive of the reversed halo sign (RHS) [Fig. 2]. Given the RHS on CT, the differential diagnosis included cryptogenic organizing pneumonia (COP), bacterial pneumonia, sarcoidosis, non-specific interstitial pneumonia as well as other infectious or inflammatory processes. Although it was felt to be an unlikely diagnosis, given the presence of a markedly enlarged uterus in a patient being worked up for possible malignancy, atypical appearance of pulmonary metastases was also considered. To obtain a diagnosis, the patient underwent a CT-guided core biopsy of the right lower lobe lesion using a 15 cm long 18-guage SuperCore needle (Angiotech Pharmaceuticals, Inc., Vancouver, British Columbia, Canada) with a 2 cm long throw passed co-axially though a 17-guage introducer needle [Fig. 3]. The patient also underwent a supracervical hysterectomy.

The biopsy material received in the pathology laboratory consisted of 3 tan-pink cores of soft tissue, 0.3-0.5 cm in length and less than 0.1 cm in diameter. Microscopic examination showed lung parenchyma with prominent cellular infiltrate [Fig. 4A]. The cellular infiltrate occupied the interstitium of the lung, causing widening of the alveolar septae [Fig. 4B] and was characterized by lymphocytes, with some admixed histiocytes, plasma cells and very rare

eosinophils [Fig. 4C]. Focal fibroblastic foci were also seen. The findings were interpreted as consistent with lymphocytic interstitial pneumonia (LIP) pattern.

The final surgical pathologic diagnosis of the uterus displayed secretory endometrium and numerous leiomyomata, but no evidence of malignancy. According to clinic notes, the patient was doing well at one month following hospital discharge. She was not experiencing any pulmonary symptoms at the time of last documented clinic evaluation.

DISCUSSION

The reversed halo sign (RHS), also sometimes reported as the atoll sign, was first described in 1996 by Voloudaki et al. as a sign specific for cryptogentic organizing pneumonia (COP) [1]. It is a computed tomography (CT) pattern that represents an area of central ground-glass attenuation surrounded by a crescent or ring of consolidation. Since the initial report describing the RHS, this finding has been found to be associated with a variety of infectious and noninfectious processes [2]. According to Godoy et al., the RHS on CT is most commonly seen with COP, with this finding present on approximately 19% of all High Resolution Computed Tomography (HRCT) studies of the lungs in patients subsequently given this diagnosis pathologically. Subsequent to the initial report describing the RHS as specific for COP, this sign has also been described with invasive fungal pneumonia, paracoccidioidomycosis, Pneumocystis jirovecii pneumonia, tuberculosis, community-acquired pneumonia, Wegener granulomatosis, lipoid pneumonia, bacterial pneumonia, non-specific interstitial pneumonia, sarcoidosis, and pulmonary embolism [1-4]. Some lymphoproliferative conditions such as lymphomatoid granulomatosis or neoplasms like lung adenocarcinoma and metastatic disease may also manifest as the RHS on CT. Post-treatment changes from radiofrequency ablation and radiation therapy have also been associated with this CT sign [2, 3]. This case report describes the first histologically-confirmed presentation of lymphocytic interstitial pneumonia (LIP) with the RHS on CT.

LIP was first described by MacFarlane et al. in 1973 [5]. It is a benign lymphoproliferative disorder characterized by a diffuse and exquisitely interstitial proliferation of small lymphocytes and plasma cells [6, 7]. Patients with LIP often have an underlying systemic disease or connective tissue disorder. Conditions such as Sjogren syndrome, acquired immunodeficiency syndrome, Castleman syndrome and Epstein-Barr virus have been associated with LIP [8, 9, 10]. The patient described in this case report did not have any of these conditions.

According to Johkoh et al., the most common findings associated with LIP on HRCT are areas of ground glass attenuation, centrilobular nodules and subpleural small nodules, while on chest radiography, findings are usually bilateral reticular or reticulonodular opacities, predominantly in the lower lung zones. Other imaging findings associated with LIP include thickening of bronchovascular bundles, interlobular septal thickening, air cysts and absence of lymphadenopathy [8, 9, 11, 12].

To our knowledge, the RHS has not been described in the literature in association with LIP. We present a pathologically proven case of LIP with corresponding radiologic and histologic images. After reviewing this case report, radiologists can widen their differential diagnosis to include LIP when presented with the RHS on CT of the lungs.

TEACHING POINT

The reversed halo sign (RHS) is a nonspecific finding on High Resolution Computed Tomography. When the RHS is identified on Computed Tomography scanning, it is important to consider a broad differential diagnosis and also consider Lymphocytic Interstitial Pneumonia.

REFERENCES

- 1. Voloudaki AE, et al. CT features in two cases of bronchiolitis obliterans organizing pneumonia (BOOP). Acta Radiol 1996; 37: 889-892. PMID: 8995460
- Marchiori E, Zanetti G, Hochhegger B, Irion K, Carvalho A, Godoy M. Reversed Halo Sign on Computed Tomography: State-of-the-Art Review. Lung 2012; 190: 389-394. PMID: 22573292
- 3. Lee Y, Choi Y, Lee K, Jeon S, Park C, Heo J. Pictoral review CT halo sign: the spectrum of pulmonary diseases. The British Journal of Radiology 2005; 78:862-865. PMID:16110114
- 4. Godoy M, Viswanathan C, Marchiori E, Truong M, Benveniste M, Rossi S, Marom E. The reversed halo sign: update and differential diagnosis. British Journal of Radiology 2012; 85:1226-1235. PMID:22553298
- 5. MacFarlane, A., and Davies, D. (1973). Diffuse lymphoid interstitial pneumonia. Thorax 1973; 28: 768-776. PMID: 4787989
- 6. Johkoh T, Muller N, Pickford H, Hartman T, Ichikado K, Akira M, Honda O, Nakamura H. Lymphocytic Interstitial Pneumonia: Thin-Section CT Findings in 22 Patients. Radiology 1999; 212:567-572. PMID: 10429719
- 7. Larsen, B, Colby, Thomas. Update for Pathologists Idiopathic Interstitial Pneumonias. Archives of Pathology and Laboratory Medicine 2012; 136; 1234-1241. PMID: 23020729
- 8. Lynch D, Travis W, et al. Idiopathic Interstitial Pneumonias: CT Features. Radiology 2005; 236: 10-21. PMID: 15987960

www.RadiologyCases.com

Journal of Radiology Case Reports

- 9. Hare S, Souza C, et al. The radiological spectrum of pulmonary lymphoproliferative disease. The British Journal of Radiology 2012; 85: 848-864. PMID: 22745203
- 10. Saukkonen, Jussi. Lymphocytic Interstitial Pneumonia. www.medscape.com. Boston University School of Medicine, Boston Medical Center, 2012. Web. 24 Dec. 2012.
- 11. Dixon S, Benamore. The idiopathic interstitial pneumonias: understanding key radiological features. Clinical Radiology 2010; 65: 823-831. PMID: 20797469
- 12. Swigris, Jeffrey et al. Lymphoid Interstitial Pneumonia a Narrative Review. Chest 2002; 122:2150-2164. PMID: 12475860
- 13. Sumikawa H, Johkoh T, et al. Usual Interstitial Pneumonia and Chronic Idiopathic Interstitial Pneumonia: Analysis of CT Appearance in 92 Patients. Radiology 2006; 241: Number 1- October 2006. PMID: 16908678
- 14. Victoria, Mango, et al. Reversed Halo Sign After Radiofrequency Ablation of a Lung Nodule. Journal of Thoracic Imaging 2011; 26:4. PMID: 21307780

FIGURES

Figure 1: 52 year old female with lymphocytic interstitial pneumonia in the right lower lobe. Lung windowed axial Computed Tomography (CT) images of the lung bases on the patient's presenting CT abdomen/pelvis performed for pelvic pain, increasing abdominal girth and weight loss demonstrate nonspecific subcentimeter non-calcified solid pulmonary nodules in the left lower lobe (green arrows). (Protocol: Phillips Brilliance 64 slice CT scanner, 115 mA, 120 kvp, 3 mm slice thickness, CTDIvol 6.460 mGy, 120 mL Optiray 350 IV contrast at 2 mL/s)

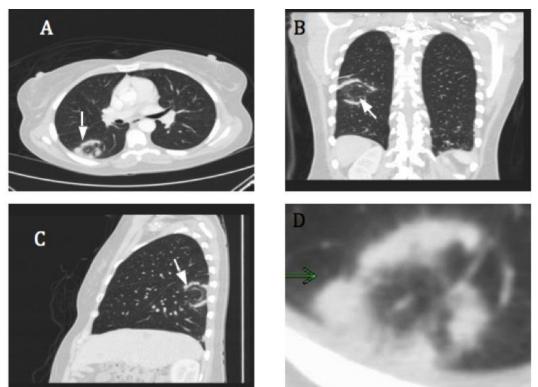
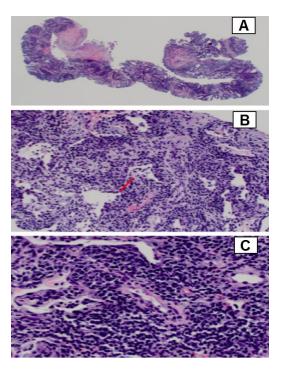


Figure 2: 52 year old female with lymphocytic interstitial pneumonia in the right lower lobe. Lung windowed axial (A), coronal (B), and sagittal (C) Computed Tomography images demonstrate a focal region of discontinuous crescentic consolidation with central ground glass opacification (arrows) and some normal appearing lung in the superior segment of the right lower lobe, consistent with the reversed halo sign. Coned-down image (D) of the reversed halo sign better illustrates the crescentic consolidation (green arrow) surrounding ground glass density admixed with normal lung parenchyma (white arrow). Protocol: Phillips Brilliance 64 slice CT scanner, 186 mA, 120 kvp, 3 mm slice thickness, CTDIvol, 9.135 mGy, 69mL Optiray 350 IV contrast at 2.2 mL/s)


Radiology Case. 2013 Oct; 7(10):51-56

Journal of Radiology Case Reports

Reversed Halo Sign on Computed Tomography as a Presentation of Lymphocytic Interstitial Pneumonia

Figure 3: 52 year old female with lymphocytic interstitial pneumonia in the right lower lobe. Procedural image demonstrates Computed Tomography-guided trans-thoracic core biopsy of the crescentic consolidation with central ground glass density in the superior segment of the right lower lobe (Protocol: Siemens Volume 200m, 5 mm slices, 120 kvp 250 mA).

Figure 4: 52-year-old female with lymphocytic interstitial pneumonia in the right lower lobe. Histopathologic examination of the lung core biopsies stained with hematoxylin and eosin (H&E): (A) 20x magnification view shows prominent cellular infiltrate in the lung parenchyma; (B) 200x magnification view with marked widening of the alveolar septae (example indicated by red bar) by inflammatory infiltrate; (C) 400x magnification view - inflammatory infiltrate consists mostly of lymphocytes with some admixture of plasma cells, histiocytes and very rare eosinophils.

Etiology	• Reported as part of immune reconstitution syndrome
	• Mutations of the B-cell chronic lymphocytic leukemia/lymphoma 6 (BCL-6 or zinc finger protein 51) gene have
	shown association
	• Viruses such as Human immunodeficiency Virus-1 (HIV), Human T-Lymphotropic Virus-1 (HTLV) and Epstein
	Barr Virus (EBV) ^{11,12}
Incidence	Exact incidence and prevalence unknown
	 14% of patients with immunodeficiency states
	• 39% of patients with autoimmune disease ^{11,12}
Gender ratio	• Lymphocytic Interstitial Pneumonia (LIP) is more common in women when not associated with HIV infection ^{11, 12}
Age predilection	• Average age of 56 years
	• 4 th and 7 th decade of life in cases not associated with HIV ^{9,11,12}
Risk Factors	Autoimmune disease
	Systemic immunodeficiency states
	• EBV, HTLV-1, HIV-1 ^{6,8,9,11,12}
Treatment	• Corticosteroids are used if the patient is symptomatic and/or has physiologic compromise due to LIP
	• Alkylating agents for patients refractory to corticosteroids
	• Antibiotics are used for associated pulmonary infections.
	• LIP has been reported to improve with the use of zidovudine alone. Highly active antiretroviral therapy Highly
	Active Antiretroviral Therapy may result in improvement or resolution of LIP in some instances.
	• Bronchodilators may be used for associated wheezing ^{11, 12}
Prognosis	• Variable course with duration from 1 -11 years
	• Half of patients without HIV improve after treatment but relapses occur ^{11,12}
Findings on imaging	Ground glass opacities with diffuse distribution
Computed	Thin-walled perivascular/subpleural cysts and reticulation
Tomography	• Nodules follow lymphatics in centrilobular, subpleural and peribronchovascular distribution
	• Absence of Lymphadenopathy ^{6, 8,10,12}
Findings on Chest	Bilateral, predominantly lower zone, reticular or reticulonodular opacities ¹²
Radiograph	

 Table 1: Summary table for Lymphocytic Interstitial Pneumonia

 Patietrue 2000 2010 2010 2010 2010 2010

	Computed Tomography (CT) Findings	Chest Radiography (CXR) Findings
Invasive Fungal Pneumonia	 Air crescent sign Ancillary findings: nodules >1 cm in diameter Pleural effusion 	 Patchy airspace nodules Consolidation Cavitations Pleural effusion
Endemic Fungal Infections (Paracoccidioidomycosis, Histoplasmosis and Cryptococcosis)	 RHS Air crescent sign Ancillary findings: nodules >1 cm in diameter Pleural effusion 	 Patchy airspace nodules Consolidation Cavitations Pleural effusion Mediastinal adenopathy
Pneumocystis jiroveci pneumonia	• Patchy areas of ground glass attenuation with a background of interlobular septal thickening	 Diffuse bilateral airspace opacities extending from the perihilar region Patchy asymmetric airspace opacities Pneumatoceles Pleural effusions Intrathoracic adenopathy
Tuberculosis (TB)	 RHS Centrilobular and pulmonary nodules Subcarinal and left hilar lymphadenopathy Areas of consolidation with cavitation 	 Patchy or nodular airspace opacities Cavity formation Noncalcified round airspace opacities Homogeneously calcified nodules (usually 5-20 mm) Miliary TB - numerous small, nodular lesions that resemble millet seeds
Bacterial Pneumonia	 RHS Nodular pattern Linear pattern Reticular pattern Ground glass opacity Consolidation 	 Non-segmental homogeneous consolidation involving one or multiple lobes Air bronchogram Homogenous parenchymal lobar opacities
Organizing Pneumonia (Cryptogenic Organizing pneumonia)	 RHS Airspace Consolidation with air bronchograms Ground glass appearance or hazy opacities 	 Patchy unilateral or bilateral consolidation Small nodular opacities
Non-specific interstitial pneumonia	 RHS Basal and peripheral predominance Traction bronchiectasis 	Ground glass opacitiesReticular changes
Sarcoidosis	 Small nodules within ground glass area and outer areas of consolidation of the RHS Large nodule in left upper lobe Subpleural nodules along costal pleural surface and fissures Hilar and/or paratracheal adenopathy with upper lobe predominance Bilateral airspace opacities in a bronchovascular distribution Calcified hilar or mediastinal lymph nodes in patients with longstanding disease 	 Hilar and/or paratracheal adenopathy with upper lobe predominance Bilateral airspace opacities Pleural effusion (rare) Egg shell calcifications
Lipoid Pneumonia	 Fat attenuation as low as -30 Hounsfield Unit within the consolidative opacities and nodules Differential diagnosis of Lymphosytic later 	 RHS Opacities typically ground glass or consolidative, bilateral, and segmental or lobar in distribution and predominantly involve the middle and lower lobes Poorly marginated nodules Pneumatoceles Pneumomediastinum Pneumothorax (rare) Pleural effusions

 Table 2 (continued on next page): Differential diagnosis of Lymphocytic Interstitial Pneumonia

www.RadiologyCases.com

	Computed Tomography (CT) Findings	Chest Radiography (CXR) Findings
Wegener Granulomatosis	 RHS Nodular opacities Areas of consolidation Cavitary lesion Airspace Opacities 	 Pulmonary nodules (solitary or multiple) Both thick- and thin-walled cavities Pneumothorax in association with cavitary nodules and subpleural blebs
Pulmonary Embolism	 RHS Subpleural wedge-shaped consolidation Pulmonary infarction 	 Band atelectasis Elevation of hemidiaphragm Prominent central pulmonary artery Oligemia at site of embolism
Lymphomatoid granulomatosis	 Pulmonary nodules or masses with peribronchovascular, subpleural, and lower lung zonal preponderance Central low attenuation ground-glass halo Peripheral enhancement of nodules and masses 	• RHS
Lung Adenocarcinoma	 Areas of consolidation Solitary or multiple pulmonary nodules Solid nodules, mixed solid/ground glass nodules Pure ground glass nodules RHS present in tumor 	 Variable Solitary pulmonary nodule, mass Pleural effusion Lung collapse Mediastinal or hilar fullness
Metastatic disease	 Multiple nodules in periphery of lungs Cavitation Calcification Hemorrhage around nodules Air-space pattern RHS 	 Large nodules frequently lobulated with irregular margins Confluent nodules Multinodular mass
Radiofrequency ablation of Pulmonary neoplasms		Non specificPneumoniaPneumothorax
Radiation Therapy	 RHS Ground glass opacities Consolidation Traction bronchiectasis Volume loss ntial diagnosis of Lymphocytic Interstitial Pneumoni 	 Non-specific Confined to the irradiation port Airspace opacities Pleural effusions or atelectasis

 Table 2 (continued): Differential diagnosis of Lymphocytic Interstitial Pneumonia

Online access

This publication is online available at: www.radiologycases.com/index.php/radiologycases/article/view/1517

Peer discussion

Discuss this manuscript in our protected discussion forum at: www.radiolopolis.com/forums/JRCR

Interactivity

This publication is available as an interactive article with scroll, window/level, magnify and more features. Available online at www.RadiologyCases.com

Published by EduRad

www.EduRad.org

ABBREVIATIONS

COP = Cryptogenic Organizing Pneumonia CT = Computed Tomography HRCT = High Resolution Computed Tomography LIP = Lymphocytic Interstitial Pneumonia RHS = Reversed Halo Sign TVUS = Transvaginal Ultrasound

KEYWORDS

Reversed halo sign; Lymphocytic interstitial pneumonia, CT

www.RadiologyCases.com