Successful arterial embolization of a giant pseudoaneurysm of the gastroduodenal artery secondary to chronic pancreatitis with literature review

Miriam Klauß¹, Tobias Heye¹, Ulrike Stampfl¹, Lars Grenacher¹, Boris Radeleff¹*

¹. Department of Diagnostic and Interventional Radiology, University hospital, Heidelberg, Germany

* Correspondence: Boris Radeleff, Department of Diagnostic and Interventional Radiology, Im Neuenheimer Feld 110, 69120 Heidelberg, Germany
(boris.radeleff@med.uni-heidelberg.de)

ABSTRACT

We report a case of an uncommon giant pseudoaneurysm of the gastroduodenal artery secondary to chronic pancreatitis. It presented with a perfused volume of 17.3 cm³ close to the branch-off of the right hepatic artery. Superselective transcatheter embolization including interlocking detachable coils and a mixture of Ethibloc and Lipiodol was our technique of choice. Following the procedure, the patient was in hemodynamically stable condition. At that time, he was free of any clinical symptoms and showed no further signs of bleeding or ischaemia. Additionally, we present an overview of the relevant literature.

CASE REPORT

A 47 year-old patient, with a history of chronic pancreatitis due to long-lasting alcohol abuse, presented with acute upper abdominal pain. On initial presentation, his haemoglobin level was 7.3 g/dl (normal range 13-17 g/dl). Esophagogastroduodenoscopy revealed an erosive duodenitis without any signs of active or recent bleeding.

An ultrasound examination revealed a cystic lesion in the pancreatic head, which pulsed when viewed in doppler mode. Subsequently, a contrast-enhanced (150 ml Imeron 300, Altana, Germany) computer tomography (Definition, Siemens, Erlangen, Germany) was performed. In the arterial phase it detected a giant pseudoaneurysm of the proximal gastroduodenal artery (GDA). The perfused part measured 3.7 x 2.5 x 4.1 cm. The total pseudoaneurysm dimension including the thrombosed part was 4.5 x 5.7 x 6.5 cm (Fig. 1, 2). CT volumetry of the perfused part of the pseudoaneurysm identified a volume of 17.3 cm³. The hepatic, gastroduodenal and splenic artery were well patent and lead to good organ perfusion. The pancreatic parenchyma exhibited scattered calcifications indicating chronic pancreatitis without any signs indicative of an acute pancreatitis.

A surgical approach was deemed unfeasible due to the high risk of rupture and consecutive massive intraabdominal bleeding. Furthermore, the surgical access to an area marked with extensive scar tissue arising out of chronic infection would have proven to be extremely difficult. As a result, the patient was referred to angiography for occlusion of the pseudoaneurysm. An emergency angiography was performed.

Celiac trunk angiography employing a selective F4 cobra catheter in DSA-technique including the injection of 30 ml contrast media (Imeron 300, Altana, Germany) with a flow of 5 ml/sec revealed that the GDA arises from the right hepatic artery. A giant pseudoaneurysm with a small neck was identified at the proximal GDA, very close to the branch-off of the right hepatic artery (Fig. 1, 2, 3).

A F2.7 microcatheter (Progreat, Terumo, USA) was advanced into the GDA distal to the pseudoaneurysm, where three interlocking detachable-coils (Boston Scientific, USA) were deployed: two 8 mm in diameter / 10 cm long coils and one 6 mm / 10 cm coil. Angiographic control confirmed the complete occlusion of the GDA distal to the pseudoaneurysm's neck (Fig. 4).

Secondly, the F2.7 microcatheter was advanced via the small neck into the pseudoaneurysm and 18 interlocking
Successful arterial embolization of a giant pseudoaneurysm of the gastroduodenal artery secondary to chronic pancreatitis with literature review

Klaüß et al.

Pseudoaneurysms of visceral arteries are uncommon (5-10%), but occur as critical complications following pancreatic surgery and pancreatitis [1-3, 8]. Therefore, early diagnosis and adequate therapeutic interventions are imperative. Arterial hemorrhage and/or ruptured pseudoaneurysms of the gastroduodenal artery (GDA) are uncommonly reported and studies investigating diagnostic and therapeutic algorithms are frequently conducted after twelve months. A contrast-enhanced follow-up CT scan (6 weeks post embolization) verified a complete occlusion without any reperfusion of the pseudoaneurysm (Fig. 7).

The patient's ensuing hospital stay was uneventful and he could be discharged after 6 days without any signs of bleeding or intestinal ischaemia. Laboratory results showed stable haemoglobin and hematocrit values. Pancreatic enzymes were not elevated following the embolization.

The clinical condition remained stable over time, which was confirmed by a follow-up conducted after twelve months. A contrast-enhanced follow-up CT scan (6 weeks post embolization) verified a complete occlusion without any reperfusion of the pseudoaneurysm (Fig. 7).

DISCUSSION

Pseudoaneurysms of visceral arteries are uncommon (5-10%), but occur as critical complications following pancreatic surgery and pancreatitis [1-3, 8]. Therefore, early diagnosis and adequate therapeutic interventions are imperative. Arterial hemorrhage and/or ruptured pseudoaneurysms of the gastroduodenal artery (GDA) are uncommonly reported and studies investigating diagnostic and therapeutic algorithms are rare [8]. Patients with ruptured pseudoaneurysms of the GDA may constitute poor candidates for emergency surgery due to hemodynamic instability and critical general conditions. However, interventional radiology such as superselective embolization offers less invasive treatment methods.

The exact pathogenesis of pseudoaneurysm formation is still unclear, but, to date, three pathogenic mechanisms are being discussed: (1) severe inflammation and enzymatic autodigestion of a pancreatic or peripancreatic artery may cause a disruption of the artery; (2) an established pseudocyst eroding a visceral artery, thereby converting the pseudocyst into a large pseudoaneurysm, and (3) a pseudocyst may erode the bowel wall with bleeding from the mucosal surface itself [4]. Pseudocysts or infected fluid collections are also frequently considered to be associated with the formation of a pseudoaneurysm [6, 7].

Another important mechanism might be an iatrogenic trauma to visceral arteries during pancreaticoduodenectomy e.g. during extensive regional lymphadenectomy or radical resection at the site of the primary tumor [5].

The vast majority of patients with pseudoaneurysms evolving in the setting of pancreatitis present with abdominal pain. However, they do not experience hypotension derived by acute blood loss (62%). The pain is often described as "crescendo" and different from the pain characteristic of pancreatitis [7-9].

Bergert et al reported a 5% prevalence of bleeding pseudoaneurysms for patients with chronic pancreatitis and a 12% prevalence for patients with necrotizing pancreatitis [8]. The most commonly affected arteries were the splenic, intrahepatic and gastroduodenal arteries [8].

Ruptures of pseudoaneurysms of the splenic (about 31%), gastroduodenal (about 24%), pancreaticoduodenal (about 21%), superior mesenteric, hepatic, or gastric arteries are reported with declining incidence [2, 6].

In a systemic review of 214 patients with pancreatitis-associated vascular complications, the splenic artery was most frequently involved, followed by the gastroduodenal, pancreaticoduodenal, and the hepatic arteries [2, 6]. Acute hemorrhage from a pseudoaneurysm is the most rapidly fatal complication of chronic pancreatitis. The mortality rate of untreated patients reaches 90 to even a 100%. Even with the most aggressive treatment, the mortality is still at 12- 50% [10].

Mortality rates after surgical repair of bleeding visceral arteries have been reported in patients with chronic pancreatitis and pseudocysts. Mortality in patients treated with arterial ligation was 43 % for pseudoaneurysms located in the head of the pancreas and 15% involving the body and tail [2]. Insufficient ligation of a vessel with a recurrence of the bleeding due to surrounding tissue infection or insufficient control of bleeding may occur. Additionally, these patients may not be hemodynamically stable enough for surgery and anesthesia due to their generally poor condition [11].

The detection of an aneurysm mostly depends on CT or angiography [12]. CT should include an arterial phase with thin slices (1 mm) in axial and coronal plane. Pseudoaneurysms appear as sharply delineated lesion with homogenous and intense arterial enhancement and an anastomosis to an artery. Angiography allows for a precise detection of bleeding arteries and pseudoaneurysms. As a result, the decision making, whether an embolization is technically feasible and safe, is facilitated [1, 13]. Interventional techniques are an accepted and safe method in the treatment of arterial complications following pancreatitis [6, 14-16]. Bougheze et al reported treatment success rates of embolization therapy alone to reach
Interventional embolization is able to successfully occlude a giant pseudoaneurysm (defined as pseudoaneurysms equal or greater than 5 cm in size) of the gastroduodenal artery secondary to chronic pancreatitis even with a wide neck and the origin being in close proximity to the branch-off from the right hepatic artery. At first, one should occlude the GDA distal to the entry of the pseudoaneurysm to stop the backflow. Then one can occlude the pseudoaneurysm. Finally, coils can be partially placed inside the GDA to close the entry and to control the risk of massive intraabdominal bleeding. Complete occlusion of the pseudoaneurysm can be achieved without surgery.

TEACHING POINT

Interventional embolization can effectively control bleeding from pseudoaneurysms. Emergency surgery should be limited to cases, where angiography cannot bring about the desired results due to the failed catheterization of vessels or insufficient occlusion of the source of bleeding.

In the reported case, interventional embolization was able to successfully occlude a giant pseudoaneurysm, thus controlling the risk of massive intraabdominal bleeding without the need for surgery.

REFERENCES

Interventional Radiology: Successful arterial embolization of a giant pseudoaneurysm of the gastroduodenal artery secondary to chronic pancreatitis with literature review

Klaß et al.

FIGURES

Figure 1: 47 year-old male patient with abdominal pain. a) Axial contrast enhanced CT (arterial phase) and b) coronal maximum intensity projection (MIP) of the upper abdomen show a giant pseudoaneurysm (white arrow) 4.5 x 5.7 cm in size and originating from the gastroduodenal artery. As a sign of the underlying chronic pancreatitis, there are calcifications in the pancreatic body (black arrow) (protocol: 120 kV, 250 mAs, 3 mm slice thickness, MIP 20 mm slice thickness, 150 ml Imeron 300, Altana, Germany).
Interventional Radiology: Successful arterial embolization of a giant pseudoaneurysm of the gastroduodenal artery secondary to chronic pancreatitis with literature review

Klaus et al.

Figure 2: 47 year-old male patient with abdominal pain. The volume rendering technique (VRT) of the contrast enhanced CT (arterial phase) in ventral (a) and dorsal (b) view demonstrate that the neck of the giant pseudoaneurysm (black arrow head) is very close of its outlet from the hepatic artery (white arrow) (protocol: 120 kV, 250 mAs, 150 ml Imeron 300, Altana, Germany).

Figure 3: 47 year-old male patient with abdominal pain. Celiac trunk angiography (arterial phase) using a selective F4 sidewinder-catheter (a) in DSA-technique with injection of 30 ml contrast media at a flow of 5 ml/sec revealed that the gastroduodenal artery (GDA) arises from the right hepatic artery. Superselective angiography with a F2.7 microcatheter (Progreat, Terumo, USA) in the GDA (b) (injection of 12 ml contrast media with a flow of 2 ml/sec; Imeron 300, Altana, Germany) reveals the giant pseudoaneurysm (white arrow) with a small neck at the proximal GDA very close to the branch-off of the right hepatic artery.
Interventional Radiology: Successful arterial embolization of a giant pseudoaneurysm of the gastroduodenal artery secondary to chronic pancreatitis with literature review

Figure 4: 47 year-old male patient with abdominal pain. Superselective angiography with a F2.7 microcatheter (Progreat, Terumo, USA) placed in the GDA after complete occlusion of the GDA distal to the entry of the pseudoaneurysm with three Interlocking Detachable Coils (black arrow). The hepatic artery is patent (black arrowhead) (manual injection of 2.5 ml Imeron 300, Altana, Germany).

Figure 5: 47 year-old male patient with abdominal pain. Angiogram with microcatheter (Progreat, Terumo, USA) located in the pseudoaneurysm after occlusion of the GDA distal to the entry of the pseudoaneurysm with three Interlocking Detachable Coils (white arrows) and superselective embolization of the pseudoaneurysm with 18 Interlocking Detachable Coils (black arrow) (manual injection of 2.5 ml Imeron 300, Altana, Germany).

Figure 6: 47 year-old male patient with abdominal pain. Superselective angiogram (microcatheter, Progreat, Terumo, USA) (a a.p. projection, b 25° RAO projection) after embolization of the pseudoaneurysm with Interlocking Detachable Coils and additional embolization with a Lipiodol and Ethibloc composite (15.6 ml). Marginal residual perfusion in the giant pseudoaneurysm (black arrow heads). Persistent complete patency of the right hepatic artery (white arrow) (flow 1.5 ml/sec, 10 ml Imeron 300, Altana, Germany).
Figure 7: 47 year old male after embolization of a giant pseudoaneurysm in the pancreas head with coils and Lipiodol and Ethibloc composite. Contrast-enhanced computed tomography (portalvein phase) (a upper slice, b lower slice) 6 weeks after embolization shows no relevant perfusion of the pseudoaneurysm in the arterial, portalvein or delayed phase (protocol: 120 kV, 290 mAs, 3 mm slice thickness, 150 ml Imeron 300, Altana, Germany).

Figure 8: Diagrammatic scheme to manage visceral pseudoaneurysms
Interventional Radiology: Successful arterial embolization of a giant pseudoaneurysm of the gastroduodenal artery secondary to chronic pancreatitis with literature review

Klauss et al.

<table>
<thead>
<tr>
<th>Etiology</th>
<th>Pseudoaneurysm secondary to chronic pancreatitis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Incidence</td>
<td>Bleeding pseudoaneurysms in 5% of patients with chronic pancreatitis</td>
</tr>
<tr>
<td>Gender ratio</td>
<td>No gender predilection</td>
</tr>
<tr>
<td>Age predilection</td>
<td>No age predilection</td>
</tr>
<tr>
<td>Risk factors</td>
<td>Chronic pancreatitis secondary to alcohol abuse, smoking, hereditary chronic pancreatitis</td>
</tr>
<tr>
<td>Treatment</td>
<td>Interventional embolization of the pseudoaneurysm or surgical resection</td>
</tr>
<tr>
<td>Prognosis</td>
<td>The mortality is 12-50% for an acute hemorrhage of a pseudoaneurysm</td>
</tr>
</tbody>
</table>

Findings on imaging: CT and MRI: Sharply delineated highly perfused lesion with anastomosis to an artery, homogenous enhancement, intense enhancement in arterial phase. MRI: On T1 homogeneous hypointense, on T2 homogeneous hyperintense lesion.

Table 1: Summary table of pseudoaneurysm secondary to chronic pancreatitis

<table>
<thead>
<tr>
<th>Etiology</th>
<th>Pseudoaneurysm secondary to chronic pancreatitis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Incidence</td>
<td>Bleeding pseudoaneurysms in 5% of patients with chronic pancreatitis</td>
</tr>
<tr>
<td>Gender ratio</td>
<td>No gender predilection</td>
</tr>
<tr>
<td>Age predilection</td>
<td>No age predilection</td>
</tr>
<tr>
<td>Risk factors</td>
<td>Chronic pancreatitis secondary to alcohol abuse, smoking, hereditary chronic pancreatitis</td>
</tr>
<tr>
<td>Treatment</td>
<td>Interventional embolization of the pseudoaneurysm or surgical resection</td>
</tr>
<tr>
<td>Prognosis</td>
<td>The mortality is 12-50% for an acute hemorrhage of a pseudoaneurysm</td>
</tr>
</tbody>
</table>

Findings on imaging: CT and MRI: Sharply delineated highly perfused lesion with anastomosis to an artery, homogenous enhancement, intense enhancement in arterial phase. MRI: On T1 homogeneous hypointense, on T2 homogeneous hyperintense lesion.

Table 2: Differential table of pseudoaneurysm

<table>
<thead>
<tr>
<th>Pseudoaneurysm</th>
<th>CT</th>
<th>MRI</th>
<th>Angiography</th>
<th>US</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pseudoaneurysm</td>
<td>Sharply delineated lesion with homogenous enhancement and intense enhancement in the arterial phase, anastomosis to an artery</td>
<td>On T1 homogeneous hypointense, on T2 homogeneous hyperintense lesion, intense enhancement in arterial phase</td>
<td>Sharply delineated, highly perfused lesion with anastomosis to an artery</td>
<td>Hypoechogenic, cystic, in the Doppler mode pulsating lesion</td>
</tr>
<tr>
<td>Neuroendocrine pancreatic tumor</td>
<td>Hyperattenuating, well-defined lesion in the arterial and venous phase without anastomosis to a vessel</td>
<td>On T1 hypointense, on T2 hyperintense lesion, hyperattenuating after administration of contrast medium</td>
<td>Well-defined lesion with high contrast medium enhancement</td>
<td>Sharply defined lesion, hypoechogetic</td>
</tr>
<tr>
<td>Hypervascular metastases</td>
<td>One or more lesions with heterogeneous enhancement, hyperdense in the arterial phase</td>
<td>On T1 hypo- or isointense, on T2 hyper- or isointense lesion, hyperattenuating in arterial phase</td>
<td>Heterogeneous lesion with higher contrast-medium enhancement than surrounding tissue</td>
<td>One or multiple hypoechogetic lesions</td>
</tr>
</tbody>
</table>

Abbreviations

CT = computed tomography
GDA = gastroduodenal artery

Keywords

Angiography; embolization; pseudoaneurysm; interventional radiology; chronic pancreatitis

Online access

This publication is online available at:

Peer discussion

Discuss this manuscript in our protected discussion forum at:
www.radiolopolis.com/forums/JRCR

Interactivity

This publication is available as an interactive article with scroll, window/level, magnify and more features.
Available online at www.RadiologyCases.com

Published by EduRad
www.EduRad.org