Unicentric or Multicentric Castleman disease?
A case report of a pelvic intraperitoneal mass in a middle aged woman

Antonella Smedile1*, Francesca Capuano2, Sara Fraticelli2, Marco Lucioni2, Alfredo La Fianza1

1. Department of Diagnostic Imaging Institute of Radiology, IRCCS Foundation Policlinic San Matteo, University of Pavia, Pavia, Italy
2. Department of Anatomic Pathology, IRCCS Foundation Policlinic San Matteo, University of Pavia, Pavia, Italy

* Correspondence: Antonella Smedile, IRCCS Foundation Policlinic San Matteo, University of Pavia, Pavia, Italy (antonella.smedile2@gmail.com)

ABSTRACT
Castleman Disease is a lymphoid disorder characterized by the presence of an enlarged or abnormal lymph node/lymphatic tissue. The disease is classified into unicentric or multicentric variants. The unicentric form is a benign disorder that is usually asymptomatic and consists of a single lymphoid mass that is predominantly located in the mediastinum, but can also rarely develop in the neck or abdomen. The multicentric type involves more than one lymphatic station and is related to the presence of type B symptoms (fevers, night sweats and weight loss), HIV/HHV8 infection and increased serum IL-6 levels. We present the case of an unusual pelvic intraperitoneal manifestation of Castleman Disease in a 52-year-old caucasian woman who showed clinical, radiological, histological and laboratory findings common to both Unicentric and Multicentric Castleman Disease.

CASE REPORT

A 52-year-old caucasian woman, with history of ovarian pelvic pain and without any other systemic symptom or disease, underwent a routine transabdominal and transvaginal ultrasonography (US), which reported a solid heterogeneous ovarian lesion with a maximum diameter of 5 x 3 cm, lobulated margins and a peripheral hypervascularity at color-doppler (Fig. 1, Fig. 2).

A contrast-enhanced abdominal computed tomography (CT) examination was performed shortly after at our Institution and revealed a right-pelvis centered 4.7 cm sized intraperitoneal solid mass (113 HU after contrast administration), with regular but lobulated margins and several intralesional punctate calcifications; an isolated enlarged right obturator lymph node was documented as well (maximum diameter of 26 mm) (Fig. 3, Fig. 4).

Due to shape, location and unknown nature of the described mass, the patient underwent a whole-body 18F-FDG positron emission tomography (PET) that showed a moderate hypermetabolic activity (SUVmax 5) of both the ovarian lesion and of the enlarged ipsilateral obturator lymph node (Fig. 5, Fig. 6).

As a consequence, the patient underwent an explorative laparoscopic surgery at our Institution, in which the intraperitoneal mass was excised.
At histologic examination the mass presented as a lymph node with peculiar features: several B-cell (CD20+, CD79a+) lymphoid follicles were found, with a variable histologic appearance, the majority showing regressively transformed B cell lymphomas-2 (Bcl-2) negative germinal centers, mainly consisting of follicular dendritic cells (CD21+, CD23+), with an expanded mantle region around and a hypervascular interfollicular zone (Fig. 7 a, b, d). The mantle cells formed concentric rings around FDCs (onion skin pattern). Some vascular hyalinized vessels radially penetrated into the germinal center to form the characteristic “lollipop” follicles (Fig. 7 b). The interfollicular area contained increased number of high endothelial venules and small CD3+ T-cell lymphocytes. The immunohistochemical staining for HHV8-related proteins was unremarkable. On the base of such findings, a histopathological diagnosis of hyaline-vascular type Castleman Disease (CD) was suggested. Once the histopathological diagnosis was confirmed, a blood panel performed revealed a mild reduction of WBC (2550/mm³) with neutropenia (1700/mm³) and lymphopenia (500/mm³), a mild increase of light chain K and with neutropenia (1700/mm³), normal levels of LDH and β2 microglobulin. Immunostaining and urine exam were unremarkable, nonetheless a mild increase in serum level of IL-6 was detected. Serologies for HIV, HCV, HBV and HHV8 were unremarkable.

These finding were unable to fully confirm the supposed diagnosis of Unicentric Castleman Disease; in fact, even if virology was negative for a formentioned viruses and histological finding of hyaline-vascular pattern is commonly linked to this variant of Castleman disease, the presence of two pathological masses and the increase of IL-6 serum levels supported the theory of a Multicentric Castleman Disease (MCD). Two months later another follow-up CT examination was performed, demonstrating no recurrence of the mass (Fig. 8 a), and the persistence of the enlarged right obturator lymph node (Fig. 8 b), though it did not show a hypermetabolic activity at another 18F-FDG-PET examination (Fig. 9). Moreover the patient did not complain about pelvic pain.

The patient is still in clinical, radiological and laboratory follow-up, with no evidence of recurrent disease.

The presented case report revealed characteristics common to both Unicentric and Multicentric Castleman Disease: the patient did not show typical B symptoms (fevers, night sweats and weight loss), yet with laboratory indices impairment, especially of IL-6 levels. A CT scans demonstrated two pathological pelvic lesions: the largest being a right pelvic mass, yet with histology consistent for Hyaline Vascular-Castleman Disease and negative HHV8 immunostaining, the other an enlarged ipsilateral obturator lymph node.

A short-term post-operative follow up CT performed two months after the surgical removal of the larger mass confirmed the persistence of the enlarged obturator lymph node, but with no pathologic metabolic activity at PET. Moreover IL-6 serum level had got back into the normal range and the patient referred to get healthy. As a consequence, the diagnosis of Unicentric Castleman disease was achieved.
At MRI, pelvic Unicentric Castleman Disease lesions typically appear as hypointense on T1-weighted images and hyperintense on T2-weighted images, but such characteristics are unspecific [7].

Whole-body PET has a role to assess the metabolic status of masses/enlarged lymph nodes suspected for CD. 18F-FDG-PET allows the recognition of high metabolic uptakes even in non-enlarged lymph nodes, thus playing a role in both staging and monitoring of the disease [8].

Laboratory abnormalities, like anemia and elevation of inflammatory markers, or the presence of type B symptoms (fevers, night sweats and weight loss) are extremely rare in UCD, but can be more frequently observed in histologically proven PC-CD [3], which occurs in only few UCD cases (9-24% of the total) [6].

MCD represent the “dark side” of Castleman disease. HIV infection is an important risk and bad prognosis factor, but all HIV positive patients develop the MCD are co-infected with HHV8. HHV8 can also affect HIV negative patients, and is present in 50% cases of MCD arising in HIV negative patients. The remaining 50% of MCDs have histopathological feature consistent with the PC-CD variant [3].

The majority of MCD patients present with type B symptoms, multiple lymphadenopathies, hepatosplenomegaly and fluid retention within the third space. Laboratory abnormalities, such as the increase of inflammatory markers and more specifically of cytokine levels (IL-6 above all) are common in these patients [3].

At imaging, multiple lymphadenopathies are commonly found in MCD. HV-CD and PC-CD show different CT enhancement patterns, respectively more prominent for HV-CD and less relevant for PC-CD. Such finding, however, is not sufficient to distinguish between the histologic subtypes [13].

Treatment & Prognosis:

Patients with UCD have nearly 100%-5-year survival following en bloc surgical resection [7]; patients unsuitable for surgery can undergo radiation therapy [3]. The surgical removal of the lymphoid tissue eliminates the clinical symptoms, if present, and reduces IL-6 serum levels [14].

Due to the risk of lymphomatous conversion of the lymphoid masses and to the possibility of developing a lymphoma in other sites, a post-surgical clinical-radiological surveillance is recommended. The follow-up of these patients should therefore include an annual 18F-FDG-PETand serum biomarkers (IL-6, CRP, serum free light chains, and quantitative immunoglobulins) [8].

Treatment of MCD is based on corticosteroid, chemotherapy, monoclonal antibodies and radiotherapy and, in certain cases, on combined therapy; MCD, however, is difficult to be treated and completely eradicated [3][7].

Differential Diagnosis:

UCD shows unspecific imaging features. At CT examination UCD can be described as a single, well-defined mass with homogeneous soft-tissue attenuation marked or moderated enhancement in the post-contrast arterial phase and punctate calcifications. At MRI examination, UCD characteristics include T1-hypointensity, T2 hyperintensity and contrast enhancement after gadolinium administration.

The differential diagnosis for abdominal-pelvic UCD include lymphomas, retroperitoneal sarcoma, desmoids tumors [8] and metastatic disease.

Conversely, differential diagnosis of MCD includes lymphomas, infections and immunological diseases like systemic lupus erythematosus (SLE); in HIV seropositive subjects, also persistent generalized lymphadenopathies (PGL) should be taken into account as a mimicker [2].

Whole body PET demonstrates an elevated glucose uptake in both enlarged and in non-enlarged nodes but generally, in CD masses, FDG uptake is less prominent than what is observed in lymphomas [2].

In conclusion, when a single, well-defined, homogeneous soft-tissue attenuation abdominal-pelvic mass or a single enlarged lymph node with marked or moderate enhancement is detected at CT examination, Unicentric Castleman disease should be included in the differential diagnosis and an excisional biopsy should be performed for confirmation.

TEACHING POINT

Unicentric Castleman disease (UCD) should be considered when a single, well defined, homogeneous soft-tissue attenuation contrast-enhancing abdominal mass is detected at CT in an asymptomatic patient. Even though imaging may be suggestive, a histological confirmation is still required for definitive diagnosis and to differentiate it from metastatic disease, lymphoproliferative disorders and other hyper vascularized masses.

REFERENCES


Figure 1: 52-year-old female with Castleman disease.
FINDINGS: Transabdominal ultrasonography revealed an heterogeneous hypoechoic solid lesion, located into the right pelvis. The mass was situated near the right ovary, without a secure cleavage plan. The lesion showed a maximum diameter of 5 x 3 cm, with lobulated margins and with peripheral hypervascularity at color-doppler. Uterine leiomyoma and a small amount of free fluid into the rectouterine pouch were also detected.
TECHNIQUE: Ultrasound, convex probe, 12-21 Hz

Figure 2: 52-year-old female with Castleman disease.
FINDINGS: Transvaginal ultrasonography confirmed the presence of a heterogeneous hypoechoic solid lesion, located into the right pelvis, close to the right ovary. The lesion showed a maximum diameter of 5 x 3 cm, with lobulated margins and with peripheral hypervascularity at color-doppler.
TECHNIQUE: Ultrasound, transvaginal probe, 15-22 Hz

Figure 3 (left): 52-year-old female with Castleman disease.
FINDINGS: Axial contrast enhanced CT of the pelvis in the parenchymal phase demonstrates a voluminous intra-peritoneal right pelvic solid mass (arrow). It is located behind right rectus abdominis muscle, medially respect right superficial femoral vessels and anterior to the uterus. The maximum diameter on the axial plane is of 4,7 cm. The lesion showed 113 HU of peak after contrast administration, displayed regular but lobulated margins and several calcification spots inside. The intraperitoneal location is recognizable due to the moderate upper-external dislocation of external iliac vascular pedicle. Uterine leiomyoma and a small amount of free fluid into the rectouterine pouch were also detected. Neither lytic bone lesions nor sclerotic bone lesions are detectable.
TECHNIQUE: Axial CT, 156mAs, 100kV, 5.00 mm slice thickness, 80 ml Iodixanol 320 mgI/ml.
Figure 4 (left): 52-year-old female with Castleman disease. FINDINGS: Axial contrast enhanced CT of the pelvis in the portal phase also shows the presence of an isolated right obturator enlarged lymph node with maximum diameter of 26 mm (arrow). Uterine leiomyoma and a small amount of free fluid into the rectouterine pouch were also detected. Neither lytic bone lesions nor sclerotic bone lesions are detectable. TECHNIQUE: Axial CT, 156mAs, 100kV, 5.00 mm slice thickness, 80 ml Iodixanol 320mgI/ml

Figure 5: 52-year-old female with Castleman disease. FINDINGS: Axial 18F-FDG PET-CT fusion images of the pelvis demonstrate moderate metabolic activity (SUVmax 5) in both the right pelvic mass (asterisk) located near the right ovary, and the right external obturator lymph node (arrow). TECHNIQUE: 18F-FDG-PET, 213 MBq/Kg, 60 min after i.v. injection.

Figure 6 (right): 52-year-old female with Castleman disease. FINDINGS: MIP of the whole-body PET demonstrates two FDG avid areas in the pelvis (SUVmax 5) in both the right pelvic mass (full arrow) and in the right obturator lymph node (empty arrow). TECHNIQUE: 18F-FDG-PET, 213 MBq/Kg, 60 min after i.v. injection.
Figure 7: Pathology of 52-year-old female with Castleman disease.
FINDINGS: a) low magnification picture showing several lymphoid follicles, some of them regressively transformed, composed predominantly by FDCs cells with a hyper vascular interfollicular zone. b) (HE 20x) picture showing vascular hyalinized vessels radially penetrated into the germinal center to form the characteristic "lollipop" follicle. c) Immunostaining for Bcl-2 resulting negative on germinal centers, supporting the reactive pattern. d) Immunostaining for CD-23 documenting increased number of FDCs.
TECHNIQUE: a) Hematoxylin- eosin, 2x. b) Hematoxylin- eosin, 20x. c) Immunostaining for Bcl-2 (2x, Envision Flex Peroxidase). d) Immunostaining for Bcl-2 (2x, Envision Flex Peroxidase).

Figure 8: 52-year-old female with Castleman disease.
FINDINGS: Post-surgery axial contrast-enhanced CT of the right pelvis in the parenchymal phase shows no residual mass in right pelvis (A) and the persistence of the enlarged right obturator lymph node (B, empty arrow).
TECHNIQUE: Axial CT, 156mAs, 100kV, 5,00 mm slice thickness, 80 ml Iodixanol 320mgI/ml
General Radiology: Unicentric or Multicentric Castleman disease? A case report of a pelvic intraperitoneal mass in a middle aged woman

Smedile et al.

Figure 9: 52-year-old female with Castleman disease.
FINDINGS: MIP of the whole-body PET and fusion CT-PET images demonstrate no FDG avid areas in the right pelvis, especially in the right obturator lymph node that used to show metabolic activity into pre-operative FDG/PET.
TECHNIQUE: 18F-FDG-PET, 220 MBq/Kg, 60 min after i.v. injection.

<table>
<thead>
<tr>
<th>Castleman disease</th>
<th>Unicentric</th>
<th>Multicentric</th>
</tr>
</thead>
<tbody>
<tr>
<td>Etiology</td>
<td>Unknown</td>
<td>HHV8 (especially in HIV-patients)</td>
</tr>
<tr>
<td>Incidence</td>
<td>6,500 to 7,700 new cases per year in the US</td>
<td>Modest male predominance</td>
</tr>
<tr>
<td>Gender</td>
<td>Modest female predominance</td>
<td>4th-6th decade</td>
</tr>
<tr>
<td>Age predilection</td>
<td>3rd-4th decade</td>
<td>HHV8 infection</td>
</tr>
<tr>
<td>Risk factors</td>
<td>Unknown</td>
<td>Monoclonal antibodies and/or radio-chemotherapy</td>
</tr>
<tr>
<td>Treatment</td>
<td>Surgical removal</td>
<td>Depends on histological subtype and treatment response</td>
</tr>
<tr>
<td>Prognosis</td>
<td>Near 100%-5-year survival</td>
<td>Diffuse lymph node enlargement</td>
</tr>
<tr>
<td>CT features</td>
<td>A single, well defined, homogeneous soft-tissue attenuation mass with marked or moderate enhancement</td>
<td></td>
</tr>
</tbody>
</table>

Table 1: Summary table of different types of Castleman disease.
A case report of a pelvic intraperitoneal mass in a middle aged woman

Unicentric or Multicentric Castleman disease?

<table>
<thead>
<tr>
<th>CT</th>
<th>Unicentric Castleman disease</th>
<th>Metastatic disease</th>
<th>Lymphoproliferative disorder</th>
<th>Malignant mesothelioma</th>
</tr>
</thead>
<tbody>
<tr>
<td>A single, well defined, homogeneous soft-tissue attenuation mass with marked or moderate homogeneous enhancement[11].</td>
<td>Nodules, plaques, sheets of soft tissue, which progress to &quot;omental cake&quot;, with contrast enhancement after contrast administration. Calcifications from mucin-producing primary tumors [15]. Usually associated with ascites and lymph node enlargement.</td>
<td>Lobulated masses, with homogeneous contrast enhancement, encasing vessels without displacement (&quot;sandwich sign&quot;)[16]. Not significant enhancement or calcifications[11].</td>
<td>Sheets or diffuse thickening of peritoneum, with contrast enhancement after contrast administration [15]. Usually associated with small amount of ascites and lymph node enlargement.</td>
<td></td>
</tr>
</tbody>
</table>

| MRI T1 | Low signal intensity | Hyperintensity after gadolinium administration | Signal intensity similar to muscle | Hyperintensity after gadolinium administration |
| MRI T2 | High signal intensity | Intermediate signal intensity | Intermediate signal intensity, similar to fat | Intermediate signal intensity |

| PET | FDG uptake lesser than what observed in lymphomas | Single or multiple enhancing hypermetabolic peritoneal nodules; often associated with ascites whit or without FDG avidity[17]. | Typically manifest ad lymphadenopathy or mimics peritoneal carcinomatosis with mildly diffuse FDG activity and higher uptake in the discrete peritoneal nodules[16]. | High FDG avidity seen in solid component[17]. |

### Table 2: Differential diagnoses table for peritoneal pelvic masses.

#### Abbreviations
- CD = Castleman disease
- HV = Hyaline vascular type
- MCD = Multicentric Castleman disease
- NOS = Non-otherwise specified
- UCD = Unicentric Castleman disease

#### Keywords
- Castleman disease; intraperitoneal mass; lymphoproliferative disorder; unicentric; multicentric