Evolution of gout: "malignant" change over time?

Sterling Ellis Eide¹, Yiu Ming Khor², Ju Ee Seet³, David Soon Yiew Sia¹*

¹. Department of Diagnostic Imaging, National University Hospital of Singapore, Singapore
². Department of Nuclear Medicine, Singapore General Hospital, Singapore
³. Department of Pathology, National University Hospital of Singapore, Singapore

*Correspondence: David Soon Yiew Sia, Institution: National University Hospital of Singapore, 5 Lower Kent Ridge Road Singapore 119074, Singapore (davidssy@yahoo.com)


ABSTRACT

Gout is a common entity; yet it is such a great mimicker in its imaging features that it can confuse clinicians and radiologists alike, sometimes leading to unnecessary investigations and treatment. We present a case of a 52 year old male renal transplant patient who presented with a slow growing mass in his left shin. The initial radiograph demonstrated a non-aggressive looking calcified lesion. A fine needle aspiration demonstrated this lesion to be gout deposition. The lesion was unchanged in the following eight years until the patient reported a sudden growth in size. Imaging showed features of an aggressive lesion with disruption of the previous calcification as well as enhancement on magnetic resonance imaging. Surgical excision biopsy was performed in view of the worrisome features on imaging and the histology showed tophaceous gout. Following description of our case, we reviewed the clinical and imaging features of gout and discussed its differential diagnoses.

CASE REPORT

A 52-year-old male patient with a history of dual cadaveric renal transplant presented nine years ago with a slow growing, painless mass in his left shin over 3 months. He was not known to have gout prior to this presentation.

Radiographs of the left tibia and fibula in anterior-posterior and lateral views demonstrated a well-defined mass with a calcified rim in the anterior compartment of the left mid shin (Fig. 1). This was initial thought to represent myositis ossificans or calcific myonecrosis. Further evaluation with computed topography showed a well-circumscribed mass predominantly confined in the anterior compartment with internal and rim calcification as well as ground-glass matrix (Fig. 2). It measured 3.7 x 3.0 x 16.8cm (Antero-posterior x medial-lateral x cranio-caudal). The mass did not involve the underlying bone. This was again interpreted to represent a non-aggressive lesion such as myositis ossificans or calcific myonecrosis. The clinician decided to perform a fine needle aspiration which showed the mass to be tophaceous gout (Fig. 3).

The mass remained stable in size for a period of eight years with rare interval radiograph performed demonstrating no significant change in the lesion (Fig. 4).

Eight years later, the patient presented once again with interval development of a smooth, flesh-colored lump at the anterior aspect of his left shin which was increasing in size. This was in the same region as the previously known mass (Fig. 5). Radiographs of the left tibia and fibula revealed disruption of calcification in the anterior aspect of the previously well-circumscribed calcified mass (Fig. 6). Suspicion of a new aggressive pathology such as a sarcoma occurring in this region was raised by the reporting radiologist.
CT confirmed the lesion had increased in size, now measuring 6.7 x 5.1 x 17.4 cm (Antero-posterior x medial-lateral x cranio-caudal) with the lobulated anterior aspect of the mass having few scattered areas of calcification (Fig. 7). There was also a reduction in internal matrix and increase in periosteal reaction along the fibula shaft.

MRI was performed which demonstrated the complex nature of the mass, which was predominantly T1W isointense, heterogeneous T2W signal with internal calcification and avid enhancement particularly in its periphery (Fig. 8, Fig. 9). The signal characteristics and enhancement raised the possible diagnosis of a sarcoma.

A Technetium-99m methylene diphosphonate bone scan was also performed, which showed a non-osseous mass in the left shin with mild peripheral radiotracer uptake on the delayed images with central photopenia. No suspicious focus of abnormal tracer uptake is detected in the rest of the skeleton (Fig. 10). The findings rendered the diagnosis of osteosarcoma unlikely.

Nonetheless, in view of the suspicious features on the CT and MRI, decision was made to perform an excision biopsy of this mass to obtain a histological diagnosis. Histology showed features of chronic tophaceous gout, with numerous uric acid crystals seen on polarised light microscopy of the accompanying fluid sample (Fig. 11). The patient was thus once again reassured of the benign nature of the mass and was provided with medical management of his underlying gout.

**DISCUSSION**

**Etiology & Demographics**

“People wish their enemies dead, but I do not; I say give them the gout, give them the stone!” The words by English aristocrat Lady Mary Wortley Montagu (1689 - 1762) captured vividly the affliction of gout over many for more than two millennia, long before the pathophysiology of the monosodium urate crystal deposition disease was elucidated. The prevalence of gout is increasing and is mainly seen in developed countries [1]. Men are more much more likely to be affected than women (10:1) and gout before young adulthood is exceedingly rare unless in patients with a specific enzyme defect [2]. It is estimated to affect 3.9% of adults in the United States of America [3]. As an inflammatory arthritis associated with hyperuricemia, gout is more common in patients with impaired excretion of uric acid or increased production of uric acid. Other risk factors include increasing age, obesity, a high protein diet, high alcohol consumption, combined hyperlipidemia, diabetes mellitus, ischemic heart disease, hypertension and family history of gout.

**Clinical & Imaging findings of gout**

The clinical manifestations of hyperuricemia may include:

- Recurrent attacks of acute inflammatory mono-articular arthritis flares, classically in the unilateral first metatarsophalangeal joint (also known as podagra)
- Chronic polyarticular gout

CT showed features of chronic tophaceous gout. Ultrasound is able to detect erosions, joint effusion, synovitis, increased vascularity as well as urate crystal deposition in gout. The characteristic appearance of a soft tophus is described as an anechoic halo with hypechoic heterogeneous center. Calcified, hard tophi results in an intensely hypechoic foci with posterior acoustic shadowing and does not allow imaging of structures below it. Deposition of urate crystals over hyaline cartilage may also produce an "artificer" or "urate-sand" appearance [8].

**Differential Diagnosis**

The diagnosis of gout in a patient presenting with first episode of mono-articular joint pain can be challenging. As there may be little to no erosive bony changes on radiological examination or associated tophus, it is imperative to consider
septic arthritis as a differential diagnosis. Other differential diagnoses of a mono-articular arthritis include trauma, calcium pyrophosphate crystal disease (CPPD), reactive arthritis, monoarticular osteoarthritis and seronegative spondyloarthopathies [9].

In the later phases, there may be erosive arthropathy changes on imaging, which have many differential diagnoses including rheumatoid arthritis, erosive arthritis and psoriatic arthritis. During this later phase, gout is easier to differentiate from the other causes of erosive arthropathy. The juxta-articular, sharply marginated erosions with preservation of joint space and bone density are key factors in diagnosing gout. In contrast, there is joint space narrowing and periarticular osteopenia in rheumatoid arthritis. Central erosions with joint space narrowing are seen in erosive osteoarthritis compared to the juxta-articular erosions and joint space preservation typical in gout. In psoriasis, the erosions, combined with bone proliferation and other distinct features such as dactylitis and acroosteolysis, help to differentiate between this entity and gout. These are summarized in Table 1.

In the chronic phase, urate crystal deposition may predominate the clinical picture and this may result in unusual soft tissue calcifications. On imaging, these tophaceous deposits can give rise to worrying imaging appearances that mimic malignancy, especially if they are found in unusual locations. Causes such as myositis ossificans and synovial sarcomas may have similar appearing heterogeneous calcifications and are difficult to conclusively differentiate based on imaging alone. If they occur near joints, well-defined bony erosions typically seen in gout may lead to the diagnosis. Other causes of soft tissue calcifications include venous malformations, in which case the phleboliths are usually ovoid with central lucencies, and dermatomyositis, which is accompanied by a rash and has more sheet-like appearing calcifications. These causes of soft tissue calcifications are further discussed in Table 2.

**Treatment & Prognosis**

The tenets of management of gout are symptomatic relief during an acute gouty flare and the prevention of further gouty attacks or progression of disease. The use of NSAIDs combined with colchicine is very effective in rapidly reducing the pain and swelling during an acute episode. In patients where these medications are contraindicated, therapeutic joint aspiration and intra-articular corticosteroid may be considered [10].

Lifestyle modification including reduction in alcohol intake, low purine diet and weight loss are paramount in preventing recurrent gouty attacks. In selected patients, uric acid lowering agents such as allopurinol and febuxostat, which are xanthine oxidase inhibitors, should be considered to achieve a serum urate target [11].

In a small group of patients, surgical management may be warranted. Gouty tophaceous deposits may be drained, surgically excised or shaved to improve cosmesis, alleviate pain, treat infection or restore function [12,13]. However, surgery for tophaceous gout is often associated with a relatively high rate of complication [14]. It has been suggested that earlier operations for gouty arthritis can reduce the technical difficulties and improve the functional outcomes [15].

**TEACHING POINT**

Gout is a common entity which may form soft tissue calcification anywhere in the musculoskeletal system. As its imaging features may evolve over time and mimic aggressive lesions on various imaging modalities, being aware of these pitfalls may avert the need for unnecessary investigations and treatment for patients.

**REFERENCES**

Evolution of gout: “malignant” change over time?

Ellis et al.

Figure 1: A 52-year-old male with chronic tophaceous gout. Anterior-posterior (A) and lateral (B) views of the radiograph of the left lower limb performed nine years ago. Well-defined calcification is seen centered at the anterior compartment of the left leg with no involvement of the underlying bone. Technique: Radiography.


Figure 2: A 52-year-old male with chronic tophaceous gout. Coronal (A), sagittal (B) and axial (c) unenhanced CT images of the left leg performed nine years ago. Well-defined, rim calcified mass in the anterior compartment of the leg with internal ground-glass matrix. Though the mass comes into close proximity with the tibia, there were no changes detected in the underlying bones. Technical parameters: Siemens CT scanner, tube voltage 120kVp, tube current 40mA, slice thickness 3mm.

Figure 3: A 52-year-old male with chronic tophaceous gout. Polarized light microscopy of fine needle aspirate from the calcified left shin mass. The sample shows blue-stained calcified material and numerous urate crystals. Technical parameters: Hemacolor stain, original magnification x200.

Figure 4: A 52-year-old male with chronic tophaceous gout. Anterior-posterior (A) and lateral (B) radiograph views of the left lower limb performed 7 years ago. The calcified mass in the left leg remains stable in appearance and does not show any interval change. Technique: Radiography.

Figure 5: A 52-year-old male with chronic tophaceous gout. Gross appearance of the flesh colored lump along the anterior aspect of the patient's shin (photograph taken just prior to excision biopsy). Note the lack of classic chalky appearance expected in large chronic tophaceous gout.
Musculoskeletal Radiology: Evolution of gout: "malignant" change over time?

Ellis et al.

Figure 6: A 52-year-old male with chronic tophaceous gout. Anterior-posterior (A) and lateral (B) radiograph views of the left lower limb performed last year. There is now disruption of the calcification along its anterior aspect (arrow) of the previously well circumscribed calcified mass. The suspicion of possible neoplastic change was raised. Technique: Radiography.

Figure 7: A 52-year-old male with chronic tophaceous gout. Coronal (A), sagittal (B) and axial (C) unenhanced CT images of the left leg performed last year. Compared to the previous CT study, the calcified mass in the anterior compartment of the leg shows interval decrease in its internal ground-glass matrix with disruption of its calcific rim anteriorly (arrow). New areas of calcification are also seen along the posterior aspect of the tibial shaft and there is now thick periosteal reaction noted along the fibula. Technical parameters: Siemens Sensation 64 CT scanner, tube voltage 120kVp, tube current 35mA, slice thickness 3mm.
Evolution of gout: "malignant" change over time?

**Figure 8:** A 52-year-old male with chronic tophaceous gout. Short tau inversion recovery coronal (A) and axial (B) magnetic resonance sequences. T2-weighted sagittal image (C). The mass is heterogeneous with low intensity foci likely to represent the calcified components (thick arrow). Edema is seen along the adjacent margins of the mass (thin arrow). Technical parameters: Siemens AERA 1.5T, short tau inversion recovery coronal image (TR=3990; TE=60) and axial image (TR=3950; TE=12); T2-weighted sagittal image (TR=3230; TE=77).

**Figure 9:** A 52-year-old male with chronic tophaceous gout. T1-weighted coronal (A) and axial (C) magnetic resonance sequences. T1-weighted fat-saturated post-contrast coronal (B) and axial (D) magnetic resonance sequences. The mass is heterogeneously iso to hypointense with patchy enhancement seen along its margins (arrow). This peripheral enhancement can be seen in cases of gout. Technical parameters: Siemens AERA 1.5T, T1-weighted coronal image (TR=516; TE=9); T1-weighted axial image (TR=520; TE=11); T1-weighted fat-saturated post-contrast coronal image (TR=532; TE=9) and axial image (TR=699; TE=11), Dotarem 12ml.
Figure 10: A 52-year-old male with chronic tophaceous gout. Anterior (A) and posterior (B) delayed whole body bone scan was performed. The mass in the left lower leg shows mild peripheral radiotracer uptake with central photopenia (thin arrows). Note the radiotracer uptake in the dual transplanted kidneys in bilateral iliac fossae (thick arrows). The native kidneys show no uptake of radiotracer. Technical parameters: 555 megabecquerel of Tc-99 MDP.

Figure 11: A 52-year-old male with chronic tophaceous gout. Sample from the excision biopsy of the calcified left shin mass shows very similar features from previously with blue-stained calcified material and numerous urate crystal. No malignant cell was detected. Technical parameters: Hemacolor stain, original magnification x200.
### Radiology Case

**Evolution of gout: "malignant" change over time?**

**Ellis et al.**

---

<table>
<thead>
<tr>
<th>Crystal deposition (gout and pseudogout)</th>
<th>Septic arthritis</th>
<th>Rheumatoid arthritis</th>
<th>Erosive osteoarthritis</th>
<th>Psoriatic arthritis</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Age of onset</strong></td>
<td>Any age; M=F</td>
<td>30-50yrs; F&gt;M</td>
<td>&gt;70yrs; F&gt;M</td>
<td>15-30yrs; M=F</td>
</tr>
<tr>
<td><strong>History</strong></td>
<td>Sudden onset of pain, swelling and erythema</td>
<td>Constitutional symptoms (fever)</td>
<td>Constitutional symptoms (fever, fatigue, malaise)</td>
<td>Pain related to use</td>
</tr>
<tr>
<td></td>
<td>Previous history of gout.</td>
<td>Monoarthritis</td>
<td>Polyarthritis occurring over long course (weeks or months)</td>
<td>No swelling or erythema</td>
</tr>
<tr>
<td></td>
<td>May be polyarticular</td>
<td>Swelling, erythema, pain, warmth</td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Distribution</strong></td>
<td>Monoarthritis</td>
<td>Proximal small joints</td>
<td>Symmetrical</td>
<td>Variable (symmetric polyarthritis, asymmetric oligoarthritis)</td>
</tr>
<tr>
<td></td>
<td>Small joints&gt;large joints, 1st MTPJ most common</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>May be polyarticular</td>
<td>Symmetrical</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Asymmetrical</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Radiographic findings</strong></td>
<td>Joint effusion</td>
<td>Juxta-articular osteopenia</td>
<td>Joint space narrowing</td>
<td>Enthesis</td>
</tr>
<tr>
<td></td>
<td>Bony destruction on both sides of the joint</td>
<td>Joint space narrowing</td>
<td>Central erosions</td>
<td>Periostitis</td>
</tr>
<tr>
<td></td>
<td>Juxta-articular and intra-articular erosions with overhanging edges</td>
<td>Marginal erosions</td>
<td>Normal bone density</td>
<td>Marginal to aggressive bone erosions</td>
</tr>
<tr>
<td></td>
<td>Adjacent tophus which may or may not be calcified</td>
<td></td>
<td></td>
<td>Bone resorption at tufts (Acroosteolysis)</td>
</tr>
<tr>
<td><strong>MR findings</strong></td>
<td>T1W: Low signal marrow edema</td>
<td>T1W: Low signal synovium, erosions and subchondral cysts</td>
<td>T1W: Low signal marrow edema</td>
<td>T1W: Low signal marrow edema</td>
</tr>
<tr>
<td></td>
<td>T1W: Intermediate</td>
<td>T2W: High signal perisynovial and joint effusion</td>
<td>T2W: High signal synovium, narrow edema, erosions and subchondral cysts</td>
<td>T2W: High signal marrow edema</td>
</tr>
<tr>
<td></td>
<td>T2W: Heterogeneous</td>
<td>T1W +C: Synovial and marrow enhancement</td>
<td>T1W +C: Avid enhancement of synovium</td>
<td>T1W +C: Marrow and synovium may enhance</td>
</tr>
<tr>
<td></td>
<td>T1W +C: Tophus enhances</td>
<td>Rim enhancing abscesses</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**Table 1:** Differential Table for Erosive Arthropathy
## Table 2: Differential Table for Soft Tissue Calcification

<table>
<thead>
<tr>
<th>Tophaceous gout</th>
<th>Myositis ossificans</th>
<th>Venous malformations</th>
<th>Synovial sarcoma</th>
<th>Dermatomyositis</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Age</strong></td>
<td>30-60yrs</td>
<td>Any age</td>
<td>Any age</td>
<td>15-40yrs</td>
</tr>
<tr>
<td><strong>Presentation</strong></td>
<td>• Previous history of gout.</td>
<td>• Usually after trauma</td>
<td>• Usually long history</td>
<td>• Slow growing mass</td>
</tr>
<tr>
<td></td>
<td>• May be painful</td>
<td>• May be painful</td>
<td></td>
<td>• May be painless or painful</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Distribution</strong></td>
<td>• On extensor surfaces</td>
<td>• Within muscle but may be within fat, tendon or fascia</td>
<td>• Any location</td>
<td>• Within soft tissue near large joints or tendon sheaths</td>
</tr>
<tr>
<td></td>
<td>• Near joints, bursa or tendons</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Radiographic findings</strong></td>
<td>• Calcification, if present, usually cloudy and amorphous</td>
<td>• Early stages: Soft tissue swelling with minimal amorphous calcification</td>
<td>• Soft tissue density mass containing small ovoid rim calcified foci with lucent centers (phleboliths)</td>
<td>• Soft tissue density mass. Calcification in 1/3; usually peripheral or eccentric.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Late stages: Peripheral rim calcification with lucent center</td>
<td></td>
<td>• May cause pressure erosion or periosteal reaction in the underlying bone.</td>
</tr>
<tr>
<td><strong>MRI findings</strong></td>
<td>• Tophus has</td>
<td>• Early stages: T1W: Intermediate. T2W: Heterogeneous. T1W +C: Tophus enhances.</td>
<td>• T1W: Intermediate. Phleboliths may be low signal. Subacute hemorrhage may have high signal. T2W: Fluid levels. Serpentine low signal flow voids. T1W +C: Avid enhancement.</td>
<td>• T1W: Homogenous or heterogeneous signal which is iso/hypointense to muscle. Intermuscular location results in “split fat” sign. T2W: Fluid levels. Calcification, necrosis, hemorrhage and soft tissue components result in the “triple” sign. T1W +C: Diffuse, peripheral or heterogeneous enhancement.</td>
</tr>
</tbody>
</table>
Evolution of gout: "malignant" change over time?  

**Etiology:** Hyperuricemia results in deposition of urate crystals in joints, soft tissues and bones inciting an inflammatory response.

<table>
<thead>
<tr>
<th>Incidence</th>
<th>Approximately 3% of the population</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gender ratio</td>
<td>10 : 1 (Male : Female)</td>
</tr>
<tr>
<td>Age predilection</td>
<td>30 – 60 years old</td>
</tr>
</tbody>
</table>

**Risk factors:**
- Age
- Gender
- Ethnicity
- Family history of gout
- Obesity
- Hypertension
- Hyperlipidemia
- Ischemic cardiovascular disease
- Diabetes mellitus
- Chronic kidney disease
- Dietary factors such as high protein diet
- Alcohol
- Medications altering urate balance

**Treatment:**
- Symptomatic relief during an acute gouty flare with NSAIDS and colchicine.
- Prevention of further gouty attacks or progression of disease with lifestyle modification and uric acid lowering agents such as allopurinol.

**Prognosis:** Good prognosis with adequate lifestyle modifications.

**Findings on imaging:**
- **Radiograph finding:** Juxta-articular and intra-articular erosions with overhanging edges. Bone density and joint space are preserved. Adjacent tophus may or may not be calcified.
- **Ultrasound finding:** Soft tophus appears as an anechoic halo with hyperechoic heterogeneous center. Calcified, hard tophi results in an intensely hyperechoic foci with posterior acoustic shadowing. Deposition of urate crystals over hyaline cartilage produces an irregular echogenic line (“double contour” sign). Hyperechoic foci within synovial fluid gives a “snow-storm” or “urate-sand” appearance.
- **Dual energy CT finding:** Tophus demonstrates high density (170 Hounsfield units).
- **MR finding:** Tophus demonstrates homogenous iso-to-hypointense T1W signal, iso-to-hyperintense T2W signal and avid peripheral enhancement.

**Table 3: Summary Table for Gout**

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CT</td>
<td>Computed topography</td>
</tr>
<tr>
<td>DIPJ</td>
<td>Distal interphalangeal joint</td>
</tr>
<tr>
<td>PIPJ</td>
<td>Proximal interphalangeal joint</td>
</tr>
<tr>
<td>MRI</td>
<td>Magnetic resonance imaging</td>
</tr>
<tr>
<td>MTPJ</td>
<td>Metatarsal-phalangeal joint</td>
</tr>
</tbody>
</table>

**Keywords:** Gout; soft tissue tumor; soft tissue calcification; malignant transformation; magnetic resonance imaging

**Online access**
This publication is online available at: www.radiologycases.com/index.php/radiologycases/article/view/2571

**Peer discussion**
Discuss this manuscript in our protected discussion forum at: www.radiolopolis.com/forums/JRCR

**Interactivity**
This publication is available as an interactive article with scroll, window/level, magnify and more features. Available online at www.RadiologyCases.com

Published by EduRad

www.EduRad.org